
Journal of Global Optimization 27: 427–446, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

427

Numerical Comparison of Some Penalty-Based
Constraint Handling Techniques in Genetic
Algorithms

KAISA MIETTINEN, MARKO M. MÄKELÄ and JARI TOIVANEN
Department of Mathematical Information Technology, P.O. Box 35 (Agora), FIN-40014 University
of Jyväskylä, Finland (e-mail: miettine@mit.jyu.fi, makela@mit.jyu.fi, tene@mit.jyu.fi)

(Received 14 August 2000; accepted in revised form 22 April 2003)

Abstract. We study five penalty function-based constraint handling techniques to be used with
genetic algorithms in global optimization. Three of them, the method of superiority of feasible
points, the method of parameter free penalties and the method of adaptive penalties have already
been considered in the literature. In addition, we introduce two new modifications of these methods.
We compare all the five methods numerically in 33 test problems and report and analyze the results
obtained in terms of accuracy, efficiency and reliability. The method of adaptive penalties turned out
to be most efficient while the method of parameter free penalties was the most reliable.

Key words: constrained optimization, genetic algorithms, global optimization, penalty functions

1. Introduction

Genetic algorithms are well-known stochastic methods of global optimization based
on the evolution theory of Darwin (see, for example, [10]). They have success-
fully been applied in different real-world applications, for example, in aeronaut-
ics, electrical engineering, scheduling and signal processing (see [26, 27], among
others).

In their basic form, genetic algorithms are not capable of handling constraint
functions limiting the set of feasible solutions. Therefore, some additional methods
are needed to keep the solutions in the feasible region. The constraint handling
methods can roughly be divided into two classes depending on whether penalty
functions are utilized or not. For more detailed classifications, see [5, 9, 18, 19, 23]
and references therein.

Many methods not dealing with penalty functions are mainly problem-dependent
or they are restricted to certain types of functions. For a collection of such methods,
see for example, [23] and references therein. One type of such methods are so-
called repair operators. Infeasible solutions can, for example, be projected into
the feasible region in linear problems or the consideration can be restricted to the
boundary of the feasible region (for the latter, see [30]).

428 K. MIETTINEN ET AL.

As a rule, in constraint handling methods based on penalty functions, a pen-
alty term is added to the objective function penalizing the function values out-
side the feasible region. Summaries of these methods are given, for example, in
[3, 9, 18, 23]. This type of methods are popular because they are easy to implement
on top of an underlying optimizer (like genetic algorithms). Different penalty-
based methods have been suggested in [3, 6, 9, 12, 14, 20, 32], among others.
An alternative to traditional penalty methods is the segregated genetic algorithm in
[16], which uses two penalty parameters and splits the population into two. Let us
also mention a behavioural memory-based method in several phases suggested in
[31]. In this method, the feasible region is first sampled by minimizing some con-
straint violation and then the resulting population is used to optimize the objective
function.

Other related methods include approaches utilizing augmented Lagrangian func-
tions [1] and multiobjective optimization. Multiobjective optimization methods can
treat the constraint functions as additional objective functions. This approach can
utilize penalty functions to form a second function to be minimized. Alternat-
ively, all the constraint functions can be treated separately (see [4], among oth-
ers). One more constraint handling approach is stochastic ranking [29]. In this
method, both over- and underpenalization are avoided by adjusting the penalization
stochastically.

We decided to restrict our consideration to penalty function-based methods
where the existing implementation of genetic algorithms could be utilized by modi-
fying the fitness function only. Besides the easiness of implementation, utilizing the
same underlying genetic algorithm facilitated the comparability of the methods. In
this paper, we numerically compare three methods, the method of superiority of
feasible points [23, 28], the method of parameter free penalties [7] and the method
of adaptive penalties [11, 23]. We also introduce two modifications of the adaptive
methods and propose a new formulation to the method of parameter free penalties.

An important criterion in selecting the constraint handling methods to be con-
sidered here was the generality of the approach. In other words, the method should
be as problem-independent as possible to be applicable to a wide range of optim-
ization problems. The selected methods were numerically compared by solving a
variety of 33 test problems from the literature.

The results of this work are to be used in selecting a suitable constraint handling
technique for global optimization with genetic algorithms. This technique is needed
in a multiobjective optimization system as an underlying solver. The system, called
WWW-NIMBUS (see, for example, [24, 25]), is based on interactive co-operation
between a human decision maker and an optimizer. The interaction is a way of
searching for the best compromise between several conflicting goals and a global
optimizer is an essential part in the success of the search. In NIMBUS, a part of
the human input is modelled as additional constraints. This explains the need of a
reliable constraint handling technique.

PENALTY-BASED CONSTRAINT HANDLING TECHNIQUES 429

This paper is organized as follows. In Section 2 we consider the optimization
problem and genetic algorithms in general. Five constraint handling techniques are
described in Section 3. Test problems and results are introduced in Section 4, and
the paper is concluded with a discussion in Section 5.

2. Elements of Genetic Algorithms

We consider an optimization problem of the form

minimize f (x) (2.1)

subject to x ∈ S,

where f : R
n → R is the objective function and x = (x1, . . . , xn)

T ∈ R
n is a

vector of variables. The feasible region S �= ∅ is bounded by box constraints and
m inequality constraints, that is,

S = {x ∈ R
n | xl � x � xu and gj (x) � 0 for j = 1, . . . , m}, (2.2)

where xl, xu ∈ R
n and gj : R

n → R for j = 1, . . . , m.
We are looking for the global minimum (assuming it exists) of problem (2.1), in

other words, the point x∗ ∈ S such that

f (x∗) � f (x) for all x ∈ S.

In nonconvex problems, both locally and globally optimal solutions may exist.
Then, special methods of global optimization are needed in order to find the global
ones. Global optimization methods can be divided into deterministic and stochastic
ones. Deterministic methods are usually based on some special assumptions on
the problem to be solved (see, for example, [13]), whereas stochastic methods
utilize randomness. Because of their general nature, stochastic methods work even
with discontinuous functions. Genetic algorithms represent this type of methods.
In what follows, we present them in the form implemented for our testing purposes
(to be reported in Section 4).

The basic idea behind genetic algorithms is to artificially imitate the evolution
process of nature. The algorithms are based on the evaluation of a set of solutions,
called a population. The population is treated with genetic operators.

At the iteration (in other words, generation) i the population Xi consists of a
number of N individuals xj , that is, solutions, where N is called a population size.
Typically, the population is initialized by randomly generated individuals.

When individuals are encoded using real numbers the corresponding methods
are called real-coded genetic algorithms. Each individual xj = (x

j

1 , . . . , x
j
n)T is

a vector of variables where each variable is a real number. The suitability of an
individual is determined by the value of a so-called fitness function based on the
objective function. Note that in this paper we are minimizing the fitness function.

430 K. MIETTINEN ET AL.

The next generation is created by the genetic operators selection, crossover and
mutation. Parents are chosen by selection and new offsprings are produced with
crossover and mutation. All these operators include randomness. Elitism guaran-
tees that the current best solutions are not lost by copying the best individuals of the
old population as such to the new population. All the above-mentioned operators
can be realized in many different ways. Here we introduce only those that have
been used in our tests.

Let us in this section assume that the only constraints in problem (2.1) are lower
and upper bounds, that is, m = 0 in (2.2).

2.1. SELECTION

In the selection process, the best individuals are chosen as parents for the crossover
operator. In the so-called tournament selection, the best of a number of randomly
selected individuals is to be chosen as one parent. A parameter called tourna-
ment size determines how many individuals are compared when selecting a parent.
Among the other possibilities for selecting parents is, for example, roulette-wheel
selection, see [10].

2.2. CROSSOVER

In crossover, the parents chosen in the selection phase are cross-bred in order
to create offsprings forming the next generation. This is realized by exchanging
information between the selected parents whenever a randomly generated number
is less than a pre-specified parameter, called crossover rate.

Crossover can be done in many different ways. A brief description can be found,
for example, in [22]. In the single-point crossover, information is exchanged start-
ing from a randomly generated crossover point. As the real variables form a string,
the crossover point is located between two variables. Notice that no crossover takes
place in this method if the problem has only one variable. In this case, mutation is
the only genetic operator that can modify the individuals.

In uniform crossover, variables from the parents are selected with equal probab-
ility to form offsprings whereas linear combinations of the parents are generated in
arithmetic crossover. Heuristic crossover produces only one offspring y (or none
at all) from the parents x1 and x2 with the formula

y = r(x2 − x1) + x2,

where r is a random number between 0 and 1 and the parent x2 is not worse than the
parent x1. If the new offspring does not satisfy the box constraints, a new random
number is generated. If required, this process is repeated up to four times (the
number of tries can naturally be changed).

PENALTY-BASED CONSTRAINT HANDLING TECHNIQUES 431

In the experiments performed, heuristic crossover produced best results (when
the four crossovers described above where compared) and was, thus, used in the
final experiments.

2.3. MUTATION

Mutation means that the new offsprings are modified with some probability de-
termined by a parameter, called a mutation rate. The real numbers in the real-coded
string are gone through one by one and a random number is generated for each of
them. If the random number is lower than the mutation rate, the mutation takes
place.

In real-coding, the following algorithm is performed (see [17]). The correspond-
ing real number is denoted by xi and the mutated counterpart by x̂i . To start with,
a new random number s ∈ [0, 1] is generated.
1. Set t = (xi − xl

i)/(x
u
i − xl

i).
2. Compute t̂ , where

t̂ =

t − t
(

t−s
t

)p
if s < t

t if s = t

t + (1 − t)
(

s−t
1−t

)p
if s > t.

3. Set x̂i = (1 − t̂)xl
i + t̂ xu

i .
The parameter p, called a mutation exponent, defines the distribution of the

mutation. The probability of small mutations increases when p > 1.
Note that the mutation rate must not be too high. Otherwise, the mutation might

turn the process into a pure random search. Other possibilities to carry out mutation
include Gaussian and uniform mutation (see, for example [23]).

2.4. ELITISM

Elitism guarantees that the objective function values do not increase from one
generation to another. This is realized by copying the best individuals to the next
generation. Elitism size is the parameter for the number of the best individuals to
be copied.

2.5. GENETIC ALGORITHM

The basic genetic algorithm can be presented in the form
1. Set population size, tournament size, crossover rate, mutation rate, mutation

exponent and elitism size. Set the parameters of the stopping criterion.
2. Initialize the population with random numbers.

432 K. MIETTINEN ET AL.

3. Compute the fitness function values. Perform selection, crossover, mutation
and elitism in order to create a new population.

4. If the stopping criterion is not satisfied, return to step 3. Otherwise, choose the
best individual found as the final solution.

As a stopping criterion, one can fix the maximum number of iterations, that is,
generations. In addition, one can set a tolerance to the difference between the best
results of a fixed number of iterations. Besides the maximum number of iterations,
in our numerical experiments, the solution process was stopped if the difference
between the best fitness function values of the last hundred iterations was less than
0.01.

3. Handling Constraints

In their basic form, genetic algorithms can only handle box constraints. Naturally,
it is always possible to reject those randomly generated points that violate the given
constraints (see for example, [33]). However, this may be a very ineffective way, in
particular, for problems where feasible solutions are difficult to be found.

Constraint functions can be taken into consideration by using penalty functions.
This means that the constraints are added to the objective function in one way or
another. Leaving the feasible region is penalized by increasing the fitness function
value with a penalty term multiplied by a so-called penalty coefficient.

In this paper, we test some penalty-based methods. Let us first consider their
basic idea. In penalty function methods, the function to be minimized is of the
form

f (x) + ri

(m∑
j=1

max
[
0, gj (x)

]q
)
, (3.1)

where ri > 0 is an iteration-dependent penalty coefficient, i is the iteration number
and q � 1 (see for example, [2]). If q = 1, the method is called an exact penalty
function method and a quadratic one if q = 2.

The main difficulty of the penalty function methods lies in selecting the initial
value and updating strategy for the penalty coefficient. If the value is too small, the
unconstrained problem (3.1) may produce a solution outside the feasible region.
On the other hand, if the value is too large, approaching the boundary outside the
feasible region is difficult and the boundary may remain unexamined. However, at
least one of the constraints is usually active in the optimal point and, for this reason,
it is important to search for the solution in the whole feasible region including
boundaries.

Many penalty function methods, like [6, 12, 20], involve problem-dependent
parameters. Furthermore, often, the performance of such methods depends on the
successful selection of the parameter values. These two features are not desirable
for general-purpose solvers. On the other hand, some other constraint handling

PENALTY-BASED CONSTRAINT HANDLING TECHNIQUES 433

methods, like [3, 16, 29], that have performed well in the comparisons available
in the literature, involve modifications on the genetic operators. Because we chose
to restrict ourselves to methods not requiring such modifications, these approaches
are not studied in this paper.

The idea of adaptive penalties is that the penalization is adjusted during the
solution process. This means that the method is not necessarily so sensitive to
the initial values of the parameters. In what follows, we introduce three adaptive
penalty function methods and two related variants for handling constraints.

3.1. METHOD OF SUPERIORITY OF FEASIBLE POINTS

The idea of the method of superiority of feasible points (SFP method) is presented
in [28]. An example of the realization of the idea is given in [23]. In the SFP
method, an additional function is added to the penalized objective function. This
iteration-dependent function assures that infeasible solutions always have worse
fitness function values than feasible solutions.

The problem to be solved with a new fitness function is of the form

minimize f̂ (x) = f (x) + r
(m∑

j=1

max
[
0, gj (x)

]) + θi(x) (3.2)

subject to xl � x � xu,

where

θi(x) =
{

0 if Xi ∩ S = ∅ or x ∈ S

α otherwise
(3.3)

and

α = max
[
0, max

y∈Xi∩S
f (y) − min

z∈Xi\S

[
f (z) + r

(m∑
j=1

max
[
0, gj (z)

])]]
. (3.4)

In other words, the function θi in (3.2) modifies the individuals of the popu-
lation in such a way that they cannot have better fitness function values outside
the feasible region than what they have inside. Note that the penalty coefficient r

is here constant because the function θi should discriminate between feasible and
infeasible individuals.

It is a straightforward task to incorporate the SFP method to the basic genetic
algorithm. The main difference is the fitness function used.

SFP algorithm
1. Set r, the population size N and the other genetic parameters as well as the

parameters of the stopping criterion. Set i = 1.

434 K. MIETTINEN ET AL.

2. Generate a random initial population X1. Set fbest = ∞.
3. If the best individual in Xi according to f̂ is feasible and it gives the best

fitness function value so far, update fbest and save that individual to xbest . If
the stopping criterion is satisfied, stop.

4. Set Xi+1 = ∅. Carry out elitism. Repeat selection, crossover and mutation until
Xi+1 has N individuals.

5. Set i = i + 1. Goto step 3.
If fbest < ∞, the final solution is xbest . Otherwise, the algorithm could not find

any feasible solution.
As a modification to the SFP method, a quadratic penalty function was tested

instead of the exact penalty function in (3.2). However, in general, the results
obtained were worse and, thus, they are not considered here.

3.2. METHOD OF PARAMETER FREE PENALTIES

The method of parameter free penalties (PFP method) is introduced in [7]. Here
we present this method as a modification of the SFP method. In other words, the
PFP method can be formulated in such a way that an additional function is added to
the penalized objective function. Again, this iteration-dependent function assures
that infeasible solutions always have worse fitness function values than feasible
solutions. Furthermore, actually, the fitness function values of infeasible solutions
do not depend on objective function values.

The problem to be solved with a new fitness function f̂ is of the form

minimize f̂ (x) = f (x) +
m∑

j=1

max
[
0, gj (x)

] + θ̂i (x) (3.5)

subject to xl � x � xu,

where

θ̂i (x) =

0 if x ∈ S

−f (x) if Xi ∩ S = ∅
−f (x) + max

y∈Xi∩S
f (y) otherwise.

(3.6)

The PFP algorithm is the same as for the SFP method except that the fitness
function is different and there is no penalty coefficient r.

The function θ̂i in (3.5) ensures that the infeasible solutions are always directed
towards the feasible region S. Due to this, the PFP method is more likely to find
feasible solutions. On the other hand, the convergence might deteriorate because
the objective function is completely neglected in the case of infeasible solutions.

A quadratic penalty function was tested in the PFP method instead of the exact
function in (3.5). In general, the results obtained were quite similar and, thus, they
are not considered here.

PENALTY-BASED CONSTRAINT HANDLING TECHNIQUES 435

3.3. METHOD OF ADAPTIVE PENALTIES

The method of adaptive penalties (AP method) tries to avoid infeasible solutions by
adjusting the penalty coefficient. The method was originally proposed for multiple-
choice integer programs in a report, later published in [11]. Anyhow, it can be
generalized for other problems as, for example, in [23].

A new parameter h is used in the AP method. This parameter is the number
of iterations whose best individuals are examined. If all the best individuals of the
past h iterations are feasible, the penalty coefficient is decreased by dividing it with
a parameter c1 > 1. Otherwise, if all the best individuals of the past h iterations are
infeasible, the penalty coefficient is increased by multiplying it with a parameter
c2 > 1. If some of the best individuals are feasible and some infeasible, we con-
tinue with the current penalty coefficient. Thus, the penalty coefficient is updated
if there is a possibility that the boundary of the feasible region is not covered or the
search concentrates on infeasible solutions.

The problem to be solved with a new fitness function f̂ is of the form

minimize f̂ (x) = f (x) + ri

(m∑
j=1

max
[
0, gj (x)

]2
)

(3.7)

subject to xl � x � xu,

where the value of the penalty coefficient ri is checked at each iteration i after the
first h iterations. Let us denote the best individual of the iteration j by yj . The
coefficient is updated according to the formula

ri+1 =

ri
c1

if i � h and yj ∈ S for all i − h + 1 � j � i

c2ri if i � h and yj �∈ S for all i − h + 1 � j � i

ri otherwise,
(3.8)

where c1, c2 > 1 and c1 �= c2 (in order to avoid cycling).

AP algorithm
1. Set c1, c2 > 1 and r1. Set h, the population size N and the other genetic

parameters as well as the parameters of the stopping criterion. Set i = 1.
2. Generate a random initial population X1. Set fbest = ∞.
3. Save the best individual of Xi according to f̂ as yi . If this individual is feasible

and it gives the best fitness function value so far, update fbest and save that
individual to xbest . If the stopping criterion is satisfied, stop.

4. Set Xi+1 = ∅. Carry out elitism. Repeat selection, crossover and mutation until
Xi+1 has N individuals.

5. Calculate ri+1 according to (3.8). Set i = i + 1 and goto step 3.
As in the SFP method, the final solution is xbest unless fbest = ∞. In the latter

case, the algorithm did not manage to find any feasible solution.

436 K. MIETTINEN ET AL.

The magnitude of the constants c1 and c2 is examined in [11]. It is shown that
the method is rather robust with respect to these values. Some formulas are given
in [11] also for the determination of h and r1. However, they are specific to the
multiple-choice integer program.

An exact penalty function was tested in the AP method instead of the quadratic
function in (3.7). However, the results obtained were mainly worse and, thus, they
are not presented here.

3.4. MODIFICATIONS

The idea of the AP method is to update the penalty coefficient based on the feas-
ibility of the best individuals of h iterations. In this approach, the feasibility of
the whole population is not considered. On the other hand, if the best solution of
a population is infeasible whereas the second best solution is feasible, the best
(feasible) solution found is not updated. This is the case even if the second best
solution would be better than the current xbest . This is in principle a drawback of
the method.

For these reasons, the first trial to be made was to modify the AP method so that
the best feasible solution found is recorded and the penalty coefficient is updated
if the whole population lies inside or outside the feasible region. In the tests, it was
checked whether it is necessary to carry out the process at every iteration. It turned
out that frequent checking improved the results. Note that the parameter h was not
needed in this approach. In all the other respects, the modification corresponded to
the AP algorithm. However, the results obtained were not better than those of the
AP method and, thus, they are not reported here.

As far as the SFP method is concerned, it may happen that no feasible solutions
are found. If the initial population does not contain any feasible solutions, the fixed
penalty coefficient may not be large enough to direct the population towards the
feasible region. That is why it is interesting to combine the above-mentioned mod-
ified adaptive penalty coefficient technique and the SFP method. This combination
will be called MASF. This algorithm corresponds to the modified AP algorithm
with exact penalties and the additional function θi .

A direct combination of the original AP and the SFP methods is not sensible
because the update process checks only the best individuals and they are always
feasible in the SFP method (assuming they exist). Nevertheless, the AP and SFP
methods can be combined by not using the θ-function when determining the need
to update the penalty coefficient. This modification will be called SFPAP. For this
algorithm, the following function is defined

f̂θ (x) = f (x) + ri

(m∑
j=1

max
[
0, gj (x)

]2
)

+ θi(x), (3.9)

where ri is defined by (3.8) and θi(x) is given by (3.3) and (3.4).

PENALTY-BASED CONSTRAINT HANDLING TECHNIQUES 437

SFPAP algorithm

1. Set c1, c2 > 1 and r1. Set h, the population size N and the other genetic
parameters as well as the parameters of the stopping criterion. Set i = 1.

2. Generate a random initial population X1. Set fbest = ∞.
3. Save the best individual of Xi according to f̂ in (3.7) as yi . If the best indi-

vidual of Xi according to f̂θ is feasible and it gives the best fitness function
value so far, update fbest and save that individual to xbest . If the stopping
criterion is satisfied, stop.

4. Set Xi+1 = ∅. Carry out elitism. Repeat selection, crossover and mutation until
Xi+1 has N individuals.

5. Calculate ri+1 according to (3.8). Set i = i + 1 and goto step 3.

4. Numerical Experiments

Numerical experiments were carried out to test the performance of the five con-
straint handling methods described. A number of 33 test problems of different types
were selected from the literature.

The set of 33 test problems used is briefly introduced in Table 1. In the table,
after the number of the problem (np), the number of variables is denoted by n

and the objective functions are classified into linear (lin), quadratic (quad) and
nonlinear (nonl) functions. The ratio of the area of the feasible region to the box
constrained area is denoted by ρ expressed in percentages. The values of ρ were
calculated by shooting 100 million random points in the box-constrained area and
counting the feasible ones. The constraints of different types are denoted by LE
(linear equations), LI (linear inequalities), NE (nonlinear equations) and NI (non-
linear inequalities). Finally, the reference and the best known objective function
value are given.

All the methods were implemented in Fortran 77 and the test runs were per-
formed on an HP9000/C160, 160MHz computer. Random numbers were generated
by using the routine G05CAF from the NAG subroutine library.

In these experiments, each equation constraint was transformed into two in-
equality constraints with a tolerance 0.01. Alternatively, equation constraints could
have been taken into consideration as such by modifying the penalty functions.

Because the idea was to compare different constraint handling techniques, the
input parameters of the genetic algorithm were constant in all the experiments. The
population size N was 101, the maximum number of iterations 500, the crossover
rate 0.8, elitism size 1, tournament size 3 and the mutation rate was 0.1. In addition,
the mutation exponent p was 4. The solution process was stopped if the difference
between the best fitness function values of 100 last iterations was less than 0.01.

The parameters of each constraint handling method were selected so that the
performance was good on the average for a subset of the problems tested. Then the
number of problems was increased and the performance of the different methods

438 K. MIETTINEN ET AL.

Table 1. Text problems

np n obj.f. ρ LE LI NE NI from best known

1 8 lin .000578 0 6 0 0 [8], pr. 3.1 7049.25

2 5 quad 26.960078 0 0 0 6 [8], pr. 3.2 −30665.5387

3 6 quad 11.312849 0 4 0 2 [8], pr. 3.3 −310.0

4 4 nonl .043394 1 2 0 0 [8], pr. 4.3 −4.5142

5 4 nonl .013552 1 2 0 0 [8], pr. 4.4 −2.07

6 6 nonl .000000 3 3 0 0 [8], pr. 4.5 −11.96

7 2 lin 44.200537 0 0 0 2 [8], pr. 4.6 −5.5079

8 2 quad .332226 0 0 1 0 [8], pr. 4.7 −16.78

9 4 nonl .000000 0 2 3 0 [23], G5 5126.4981

10 50 nonl 100.000000 0 0 0 2 [23], G2 −0.8331937

11 5 nonl .000001 0 0 3 0 [15], pr. 6 0.0539498

12 2 nonl 24.99898 0 2 0 0 [21], test #8 −1.0

13 2 nonl .861168 0 0 0 2 [23], G8 −0.095825

14 23 nonl .000000 0 0 1 0 [23], G3 −1.0

15 10 nonl .000000 3 0 0 0 [21], test #2 −47.760765

16 2 nonl 7.329000 0 0 0 2 [15], pr. 1 0.25

17 2 quad 96.644521 0 0 0 2 [15], pr. 4 5.0

18 7 nonl .524944 0 0 0 4 [23], G9 680.6300573

19 13 quad .000244 0 9 0 0 [23], G1 −15.0

20 2 nonl .006711 0 0 0 2 [23], G6 −6961.81381

21 10 quad .000110 0 3 0 5 [23], G7 24.3062091

22 2 quad 37.492715 0 1 0 1 [15], pr. 5 1.0

23 5 quad 95.256165 0 1 0 0 [8], pr. 2.1 −17.0

24 6 quad 23.404995 0 2 0 0 [8], pr. 2.2 −213.0

25 13 quad .237391 0 9 0 0 [8], pr. 2.3 −15.0

26 6 quad 1.827590 0 5 0 0 [8], pr. 2.4 −11.005

27 10 quad .004728 0 11 0 0 [8], pr. 2.5 −268.01

28 10 quad .007350 0 5 0 0 [8], pr. 2.6 −39.0

29 20 quad .000000 0 10 0 0 [8], pr. 2.7/1 −394.7506

30 20 quad .000000 0 10 0 0 [8], pr. 2.7/2 −884.75058

31 20 quad .000000 0 10 0 0 [8], pr. 2.7/3 −8695.01193

32 30 nonl 99.999947 0 0 0 2 [23], G2 −0.75

33 70 nonl 100.000000 0 0 0 2 [23], G2 −0.57

PENALTY-BASED CONSTRAINT HANDLING TECHNIQUES 439

was compared. This practice was adopted to simulate cases where the methods
should perform well without tuning the parameters separately for each problem to
be solved.

In the SFP method, the penalty coefficient r was set as 10000.0 and in all the
other methods (except PFP) the initial penalty coefficient r1 was 1.0. In the AP
method, the number of iterations whose best individuals were examined h was 10,
the decrement multiplier c1 was 3.0 and the increment multiplier c2 was 4.0. In the
MASF method, the decrement coefficient did not seem to have a significant role.
In the tests, the values c1 = 20.0 and c2 = 30.0 were used. In the SFPAP method,
the parameters h, c1 and c2 were the same as in the AP method.

Because of the stochastic nature of genetic algorithms, a hundred test runs were
performed for each of the 33 test problems. We recorded the best objective function
values for each test run. In what follows, we list for each test problem (np) the
means of the best values (mean), the best values of the 100 runs (min) as well as the
standard deviations (dev). The number of iterations was also recorded and we show
their means (iter). Finally, we present the percentage of the runs where feasible
solutions could be found (fea). Tables 2, 3 and 4 contain the above-mentioned
information obtained with the SFP, PFP, AP, MASF and SFPAP methods, cor-
respondingly. The best values of mean, min and iter are underlined for each test
problem. Note that for some problems, the obtained min values are smaller than the
best known objective function values. This is explained by the fact that equation
constraints were transformed into two inequality constraints with tolerances.

5. Discussion and Conclusions

Judging the superiority of constraint handling techniques on the basis of comparis-
ons published in the literature is difficult because of the different implementations,
genetic operators and different parameter values used, etc. Furthermore, the com-
parisons often involve a small number of test problems and a surprisingly small
number of independent runs. These observations and drawbacks motivated our re-
search. That is why a number of 33 test problems were used in a uniform computer
environment with fixed genetic operators and using 100 independent runs.

The methods are not easy to compare due to their stochastic nature. Here we de-
cided to compare the average performances. One should also keep in mind that dif-
ferent stopping criteria as well as different parameter setups could have produced
different results.

We analyze the results obtained based on three criteria: accuracy, efficiency and
reliability. Here, accuracy reflects how close the mean objective function value was
to the best known one. By efficiency, we refer to the average number of iterations
used. Finally, how well the methods managed to find feasible solutions can be
understood as their reliability.

It is natural that all the versatile information contained in Tables 2–4 can-
not easily be compressed without losing valuable data. Still, we present a very

440 K. MIETTINEN ET AL.

Table 2. Results with the SFP and PFP methods.

SFP PFP

np mean min dev iter fea mean min dev iter fea

1 7893.74 7116.64 1285.08 416.5 68 8464.55 7292.10 1294.91 101.0 100

2 −30665.53 −30665.54 0.06 296.3 100 −30665.53 −30665.54 0.01 296.3 100

3 −309.84 −310.00 1.60 217.6 100 −308.58 −310.00 12.69 224.5 100

4 −4.52 −4.53 0.15 145.8 100 −4.41 −4.53 0.40 148.4 100

5 −3.13 −3.14 0.02 128.9 100 −3.14 −3.14 0.00 129.7 100

6 −13.32 −13.41 0.26 298.8 100 −13.38 −13.41 0.15 300.0 100

7 −5.51 −5.51 0.00 110.6 100 −5.51 −5.51 0.00 110.9 100

8 −16.78 −16.78 0.00 115.5 100 −16.78 −16.78 0.00 116.5 100

9 4239.21 4221.83 62.14 404.6 100 4755.32 4221.83 531.20 102.7 100

10 −0.56 −0.64 0.03 394.7 100 −0.56 −0.64 0.03 394.7 100

11 0.38 0.05 0.29 304.5 100 0.58 0.05 0.35 108.2 100

12 −1.00 −1.00 0.00 102.8 100 −1.00 −1.00 0.00 102.7 100

13 −0.10 −0.10 0.01 106.4 100 −0.10 −0.10 0.01 106.7 100

14 0 −0.78 −1.01 0.09 461.4 100

15 −47.01 −48.11 0.77 467.2 100 −47.03 −47.97 0.77 446.7 100

16 0.25 0.25 0.00 106.0 100 0.25 0.25 0.00 106.0 100

17 5.00 5.00 0.00 110.5 100 5.00 5.00 0.00 110.0 100

18 681.56 680.68 0.76 377.4 100 682.75 680.75 2.17 225.3 100

19 −14.94 −15.00 0.34 323.9 100 −14.98 −15.00 0.20 327.1 100

20 −6961.81 −6961.81 0.00 143.7 100 −6961.81 −6961.81 0.00 143.4 100

21 26.87 24.77 1.37 459.4 100 32.63 25.76 5.64 107.6 100

22 1.00 1.00 0.00 106.7 100 1.00 1.00 0.00 106.6 100

23 −15.98 −17.00 1.16 154.4 100 −15.81 −17.00 1.54 155.1 100

24 −212.98 −213.00 0.08 213.3 100 −212.98 −213.00 0.09 216.6 100

25 −15.00 −15.00 0.00 313.0 100 −15.00 −15.00 0.00 313.4 100

26 −11.00 −11.00 0.00 204.3 100 −10.99 −11.00 0.05 212.7 100

27 −265.81 −268.01 3.21 469.2 100 −265.06 −268.00 3.42 468.6 100

28 −36.66 −39.00 5.19 259.4 100 −37.05 −39.00 4.73 251.2 100

29 −135.08 −221.11 38.63 494.3 100 −132.02 −247.72 40.54 498.2 100

30 −593.81 −696.76 34.34 463.6 100 −586.45 −698.08 29.27 458.1 100

31 −3043.37 −5374.88 682.90 486.6 100 −3106.12 −5424.69 695.63 490.1 100

32 −0.66 −0.74 0.04 350.1 100 −0.66 −0.74 0.04 350.1 100

33 −0.50 −0.57 0.03 408.3 100 −0.50 −0.57 0.03 408.3 100

PENALTY-BASED CONSTRAINT HANDLING TECHNIQUES 441

Table 3. Results with the AP method.

AP

np mean min dev iter fea

1 9050.59 7329.72 1464.15 101.9 100

2 −30662.00 −30665.53 7.95 101.0 100

3 −309.70 −310.00 1.60 101.0 100

4 −4.53 −4.53 0.00 106.8 100

5 −3.14 −3.14 0.00 106.0 100

6 −13.23 −13.41 0.60 240.7 100

7 −5.51 −5.51 0.00 102.1 100

8 −16.78 −16.78 0.00 101.0 100

9 4323.04 4221.83 315.88 303.9 91

10 −0.48 −0.57 0.04 212.4 100

11 0.31 0.05 0.24 257.0 100

12 −1.00 −1.00 0.00 103.9 100

13 −0.10 −0.10 0.01 102.2 100

14 −0.01 −0.07 0.02 101.0 100

15 −44.48 −47.94 1.64 101.0 100

16 0.25 0.25 0.00 106.3 100

17 5.00 5.00 0.00 107.7 100

18 680.83 680.64 0.20 193.5 100

19 −14.80 −15.00 0.45 215.6 100

20 −6961.81 −6961.81 0.00 103.6 100

21 27.71 24.62 2.20 201.6 100

22 1.00 1.00 0.00 104.7 100

23 −15.69 −17.00 1.93 121.7 100

24 −213.00 −213.00 0.02 187.3 100

25 −14.97 −15.00 0.07 245.1 100

26 −10.96 −11.00 0.25 184.5 100

27 −264.90 −268.01 3.66 423.2 100

28 −35.89 −38.95 5.55 169.9 100

29 −100.07 −192.60 35.78 224.0 78

30 −575.36 −673.38 32.54 249.1 78

31 −1761.01 −2690.87 296.32 103.3 76

32 −0.58 −0.73 0.06 157.6 100

33 −0.46 −0.54 0.03 371.4 100

442 K. MIETTINEN ET AL.

Table 4. Results with the MASF and SFPAP methods.

MASF SFPAP

np mean min dev iter fea mean min dev iter fea

1 8208.74 7103.78 985.27 206.6 100 8995.57 7369.27 1682.95 101.8 100

2 −30665.39 −30665.54 0.24 309.5 100 −30665.36 −30665.54 0.34 302.9 100

3 −308.74 −310.00 12.60 228.2 100 −310.00 −310.00 0.00 226.1 100

4 −4.41 −4.53 0.40 102.7 100 −4.52 −4.53 0.15 128.3 100

5 −3.14 −3.14 0.00 129.0 100 −3.13 −3.14 0.02 119.5 100

6 −13.32 −13.41 0.27 281.2 100 −13.17 −13.41 0.93 271.5 100

7 −5.51 −5.51 0.00 110.7 100 −5.51 −5.51 0.00 111.1 100

8 −16.78 −16.78 0.00 110.4 100 −16.78 −16.78 0.00 105.3 100

9 4656.19 4221.83 490.06 101.0 91 4382.28 4221.83 375.80 332.8 93

10 −0.57 −0.63 0.03 399.9 100 −0.57 −0.63 0.03 399.9 100

11 0.33 0.05 0.27 321.0 100 0.30 0.05 0.23 296.4 100

12 −1.00 −1.00 0.00 102.6 100 −1.00 −1.00 0.00 102.6 100

13 −0.10 −0.10 0.01 104.5 100 −0.10 −0.10 0.00 104.0 100

14 −0.06 −0.28 0.05 101.0 100 −0.01 −0.07 0.02 101.0 100

15 −44.76 −47.46 1.62 101.0 100 −44.45 −47.56 1.52 101.0 100

16 0.25 0.25 0.00 105.7 100 0.25 0.25 0.00 105.8 100

17 5.00 5.00 0.00 110.3 100 5.00 5.00 0.00 110.0 100

18 681.34 680.72 0.50 368.0 100 681.86 680.75 0.73 378.2 100

19 −14.98 −15.00 0.20 330.0 100 −14.99 −15.00 0.02 365.8 100

20 −6961.81 −6961.81 0.00 138.5 100 −6961.81 −6961.81 0.00 125.1 100

21 27.06 24.95 1.49 457.2 100 27.70 24.88 1.90 459.6 100

22 1.00 1.00 0.00 107.0 100 1.00 1.00 0.00 106.7 100

23 −16.06 −17.00 1.19 154.5 100 −15.81 −17.00 1.43 157.9 100

24 −212.99 −213.00 0.04 224.6 100 −212.98 −213.00 0.05 217.5 100

25 −14.98 −15.00 0.20 313.8 100 −14.98 −15.00 0.01 345.7 100

26 −11.00 −11.00 0.01 200.8 100 −11.00 −11.00 0.01 199.3 100

27 −263.52 −268.00 7.30 412.6 100 −265.62 −268.00 4.11 441.3 100

28 −36.61 −39.00 5.38 253.5 100 −37.12 −39.00 4.17 255.5 100

29 −48.33 −76.46 12.11 101.0 19 −118.09 −225.81 45.86 312.8 86

30 −528.72 −540.90 9.51 101.0 21 −611.67 −692.98 33.97 473.8 72

31 −1673.70 −3240.98 397.84 101.0 23 −1761.01 −2690.87 296.32 103.3 76

32 −0.67 −0.75 0.04 372.1 100 −0.67 −0.75 0.04 372.1 100

33 −0.50 −0.57 0.03 428.3 100 −0.50 −0.57 0.03 428.3 100

PENALTY-BASED CONSTRAINT HANDLING TECHNIQUES 443

Figure 1. Rough overview of the three criteria.

rough overview of the three evaluation criteria used in Figure 1. In any case, we
emphasize the importance of the details in the tables.

As far as accuracy is concerned, we have ranked the means of the solutions re-
lated to each problem and present the averages of these ranks for each method. The
efficiency is measured by the average number of iterations used by each method.
In the figure, this is referred to as iterations. Finally, the word failures indicates the
number of problems where the method failed in finding feasible solutions. In this
way, we determine the reliability.

The success of the SFP method in finding feasible solutions turned out to depend
highly on the value of the penalty coefficient. In the tested problems, the penalty
coefficient was set to a relatively high level which explains the reasonable reliab-
ility of the method. One can conclude from the numerical results that if the SFP
method was able to find feasible solutions, it resulted in a high average accuracy
by paying the price of low efficiency. However, it is noteworthy that for one test
problem SFP did fail completely in finding feasible solutions. The AP method was
the most efficient in terms of iterations required. On the other hand, the results
obtained with AP did not meet the accuracy of the others.

The performances of MASF and SFPAP were in between AP and SFP. On the
average, SFPAP required more iterations than MASF and they both needed more
iterations than AP but less than SFP. They did not fail completely in finding feasible
solution in any of the problems because of the penalty coefficient updating. The
SFPAP method had a similar reliability to AP and MASF was slightly less reliable
in finding feasible solutions.

Based on the computational experiences we can say that all the methods in-
volving constraint handling parameters were rather sensitive to the choice of their
values. Thus, the fact that no parameters have to be specified, is a significant benefit
of PFP. Furthermore, it was the only method that was always able to find feasible
solutions. The results obtained were also satisfactory in terms of accuracy. The

444 K. MIETTINEN ET AL.

only drawback of this methods was the large number of iterations required. In this
respect, PFP was comparable to SFPAP.

To conclude, one can say that PFP outperformed SFP in efficiency and reliab-
ility. Besides, the difference in accuracy was rather insignificant. The strength of
PFP can be explained by the similar nature of the two methods; the main difference
being that PFP could better direct the search towards the feasible region, if re-
quired. The other three methods were good compromises when balancing between
accuracy, efficiency and reliability. The selection between them depends on the
preferences of the user.

For our purposes in the WWW-NIMBUS system, a general-purpose solver was
required. Thus, the reliability of PFP is valuable. Another important advantage of
PFP is the fact that no parameters are required in handling constraints. Because the
solutions obtained were also satisfactory, we decided to select the PFP method for
the WWW-NIMBUS system. Furthermore, since AP was so efficient and needed
on the average less iterations than the others, we decided to include it as well to the
WWW-NIMBUS system as an alternative solver.

Acknowledgements

This research was supported by the Academy of Finland, grants #65760, #8583
and #66407. The authors thank Mr. Janne Mäkinen for preliminary results, Mr. Jari
Huikari for assistance with the test problems and Mr. Markku Könkköla for Figure
1. The authors are also grateful to the reviewers for their constructive comments
which helped to improve this paper.

References

1. Adeli H. and Cheng N.-T. (1994), Augmented Lagrangian genetic algorithm for structural
optimization, Journal of Aerospace Engineering 7(1) 104–118.

2. Bazaraa M. S., Sherali H. D. and Shetty C. M. (1993). Nonlinear Programming: Theory and
Algorithms. 2nd edition, John Wiley & Sons.

3. Ben Hamida S. and Schoenauer M. (2000). An adaptive algorithm for constrained optimiza-
tion problems. In: Schoenauer M., Deb K., Rudolph G., Yao X., Lutton E., Merelo J. J. and
H.-P. Schwefel (eds.) Proceedings of the 6th Conference on Parallel Problems Solving from
Nature. Springer, Berlin, 529–539.

4. Camponogara E. and Talukdar S. N. (1997). A Genetic Algorithm for Constrained and Multiob-
jective Optimization. In: Alander J. (ed.), Proceedings of the 3rd Nordic Workshop on Genetic
Algorithms and Their Applications. University of Vaasa, 49–61.

5. Coello Coello C. A. (2002). Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: A survey of the state of the art, Computer Methods in Applied
Mechanics and Engineering 191 (11–12), 1245–1287.

6. Coit D. W. and Smith A. E. (1996). Penalty guided genetic search for reliability design
optimization, International Journal of Computers and Industrial Engineering 30 (4), 895–904.

7. Deb K. (2000). An efficient constraint handling method for genetic algorithms, Computer
Methods in Applied Mechanics and Engineering, 186, 311–338.

PENALTY-BASED CONSTRAINT HANDLING TECHNIQUES 445

8. Floudas C. A. and Pardalos P. M. (1987). A collection of test problems for constrained global
optimization algorithms. Springer, Berlin.

9. Gen M. and Cheng R. (1996). A survey of penalty techniques in genetic algorithms. In: Fukuda,
T. and Furuhashi, T. (eds.), Proceedings of the 1996 International Conference on Evolutionary
Computation. IEEE, 804–809.

10. Goldberg D. E. (1989). Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Publishing Company, Inc., Reading, MA.

11. Hadj-Alouane A. B. and Bean J. C. (1997). A genetic algorithm for the multiple-choice integer
program, Operations Research, 45 (1), 92–101.

12. Homaifar A., Qi C. X. and Lai S. H. (1994). Constrained optimization via genetic algorithms,
Simulation, 62 (4), 242–254.

13. Horst R. and Pardalos P. M. (1995). Handbook of Global Optimization. Kluwer Academic
Publishers, Dordrecht.

14. Kazarlis S. and Petridis V. (1998). Varying fitness functions in genetic algorithms: Studying
the rate of increase of the dynamic penalty terms. In: Eiben A. E., Bäck T., Schoenauer M.
and Schwefel, H.-P. (eds.), Proceedings of the parallel problem solving from nature. Springer,
Berlin, 211–220.

15. Kim J.-H. and Myung H. (1997). Evolutionary programming techniques for constrained
optimization problems, IEEE Transactions on Evolutionary Computation, 1 (2), 129–140.

16. Le Riche R. G., Knopf-Lenoir C. and Haftka R. T. (1995). A segregated genetic algorithm
for constrained structural optimization. In: Eshelman L.J. (ed.), Proceedings of the Sixth
International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, 558–565.

17. Mäkinen R. A. E., Périaux J. and Toivanen J. (1999). Multidisciplinary shape optimization
in aerodynamics and electromagnetics using genetic algorithms, International Journal for
Numerical Methods in Fluids. 30 (2), 149–159.

18. Michalewicz Z. (1995). Genetic algorithms, numerical optimization, and constraints. In: Eshel-
man L. J. (ed.), Proceedings of the Sixth International Conference on Genetic Algorithms.
Morgan Kaufmann Publishers, 151–158.

19. Michalewicz Z. (1995). A survey of constraint handling techniques in evolutionary computation
methods. In: McDonnell J. R., Reynolds R. G. and Fogel D. B. (eds.), Proceedings of the 4th
Annual Conference on Evolutionary Programming. MIT Press, 135–155.

20. Michalewicz Z. and Attia N. F. (1994). Evolutionary optimization of constrained problems. In:
Sebald A.V. and Fogel L.J. (eds.) Proceedings of the 3rd Annual Conference on Evolutionary
Programming. World Scientific, 98–108.

21. Michalewicz Z., Logan T. D. and Swaminathan S. (1994). Evolutionary operators for continu-
ous convex parameter spaces. In: Sebald A. V. and Fogel L. J. (eds.), Proceedings of the 3rd
Annual Conference on Evolutionary Programming. World Scientific, 84–97.

22. Michalewicz Z., Nazhiyath G. and Michalewicz M. (1996). A note on usefulness of geometrical
crossover for numerical optimization problems. In: Angeline P. J. and Bäck T. (eds.), Proceed-
ings of the 5th Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA,
305–312.

23. Michalewicz Z. and Schoenauer M. (1996). Evolutionary algorithms for constrained parameter
optimization problems, Evolutionary Computation, 4 (1), 1–32.

24. Miettinen K. and Mäkelä M. M. (1995). Interactive bundle-based method for nondifferentiable
multiobjective optimization: NIMBUS, Optimization, 34 (3), 231–246.

25. Miettinen K. and Mäkelä M. M. (2000). Interactive multiobjective optimization system WWW-
NIMBUS on the Internet, Computers & Operations Research, 27 (7–8), 709–723.

26. Miettinen K., Mäkelä M. M., Neittaanmäki P. and Périaux J. 1999 (eds). Evolutionary
algorithms in engineering and computer science. John Wiley & Sons, New York.

27. Miettinen K., Mäkelä M. M. and Toivanen J. (1999) (eds). Proceedings of EUROGEN99 –
short course on evolutionary algorithms in engineering and computer science, Reports of the

446 K. MIETTINEN ET AL.

Department of Mathematical Information Technology, Series A. Collections, No. A 2/1999.
University of Jyväskylä.

28. Powell D. and Skolnick M. M. (1993). Using genetic algorithms in engineering design optim-
ization with non-linear constraints. In: Forrest S. (ed.), Proceedings of the Fifth International
Conference on Genetic Algorithms. Morgan Kaufmann Publishers, 424–431.

29. Runarsson T. P. and Yao X. (2000). Stochastic ranking for constrained evolutionary optimiza-
tion, IEEE Transactions on Evolutionary Computation, 4 (3), 284–294.

30. Schoenauer M. and Michalewicz Z. (1997). Boundary operators for constrained parameter
optimization problems. In: Bäck T. (ed.), Proceedings of the Seventh International Conference
on Genetic Algorithms. Morgan Kaufmann Publishers, 322–329.

31. Schoenauer M. and Xanthakis S. (1993). Constrained GA optimization. In: Forrest S. (ed.),
Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann
Publishers, 573–580.

32. Smith A. E. and Tate D. M. (1993). Genetic optimization using a penalty function. In: Forrest
S. (ed.), Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan
Kaufmann Publishers, 499–505.

33. Smith R. L. (1984). Efficient Monte Carlo procedures for generating points uniformly
distributed over bounded regions, Operations Research, 32 (6), 1296–1308.

